topmath.in

mathematical induction

--------------------------------------------------------------------

---------------------------------------------------------------------




prove by mathematical induction
 that 1^3 +2^3 + 3^3 +...+ n^3 = [ ( n (n+1) ) /2 ] ^2

(sum of the cubes of the first n natural numbers)

mathematical induction sum of the cubes of the
              first n natural numbers
mathematical induction sum of the cubes of the
              first n natural numbers

Also P(1) is true                (proved earlier)

Hence  by the principle of mathematical induction
P(n) is true for all positve integers n = 1,2,3 , ...







other questions and problems:

*integral calculus integration formula





----------------------------------------------------------------------------------------------
trigonometric identity and ratio of  certain standard angles

*list of differentiation formula     *integral calculus integration formula
---------------------------------------------------------------------------------------
*HOME PAGE   * mathematical formulae  * Indices, surds and some identities:   * Quadratic equations  * Progression  *Analytical Geometry * Trigonometry formula
  *Laplace Transform Inverse laplace transform *Vector
---------------------------------------------

---------------------------------------------

* Complex Number  *Hyperbolic function
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work. Also some of the companies which are displaying
advertisements may install cookies on your computer and may be tracking your browsing habits.