topmath.in

mathematical induction
--------------------------------------------------------------------

---------------------------------------------------------------------



mathematical induction

Prove that [1/(1x2) ]+[1/(2x3)]+...+ [1/( n(n+1) )] = n/n+1 using mathematical induction

Prove that [1/(1x2) ]+[1/(2x3)]+...+ [1/( n(n+1)
              )] = n/n+1 using mathematical induction
Prove that [1/(1x2) ]+[1/(2x3)]+...+ [1/( n(n+1)
              )] = n/n+1 using mathematical induction

Take the given expression as P(n)
prove that P(1) is true

Assume that P(k) is true
Use this assumption to prove that P(k+1) is true
here you add 1/[(k+1)(k+2)] to both sides in P(k)
                                                      


other questions and problems:





----------------------------------------------------------------------------------------------
trigonometric identity and ratio of  certain standard angles

*list of differentiation formula     *integral calculus integration formula
---------------------------------------------------------------------------------------
*HOME PAGE   * mathematical formulae  * Indices, surds and some identities:   * Quadratic equations  * Progression  *Analytical Geometry * Trigonometry formula
  *Laplace Transform Inverse laplace transform *Vector
---------------------------------------------

---------------------------------------------

* Complex Number  *Hyperbolic function
disclaimer:
There is no guarantee about the data/information on this site. You use the data/information at your own risk. You use the advertisements displayed on this page at your own risk.We are not responsible for the content of external internet sites. Some of the links may not work. Also some of the companies which are displaying
advertisements may install cookies on your computer and may be tracking your browsing habits.